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Abstract
It has been shown that a slab of materials with refractive index n = −1 behaves
like a perfect lens focusing all light to an exact electromagnetic copy of an
object. The original lens is limited to producing images the same size as the
object, but here we generalize the concept so that images can be magnified.
For two-dimensional systems, over distances much shorter than the free space
wavelength, we apply conformal transformations to the original parallel-sided
slab generating a variety of new lenses. Although the new lenses are not
‘perfect’ they are able to magnify two-dimensional objects. The results apply
equally to imaging of electric or magnetic sub-wavelength objects in two
dimensions. The concepts have potential applications ranging from microwave
frequencies to the visible.

1. Prior art

The function of a conventional lens is to collect electromagnetic fields emitted by an object
and to refocus them to an image at a new location; see figure 1.

For a conventional lens, perfection is defined in terms of: the precision with which the
beams are guided to a focus; the aperture which determines how much of the emitted radiation
is accepted; and the reduction in spurious reflections from the surface of the lens. We shall
assume that we are working at a fixed frequency so that chromatic aberration is not an issue.
However, even the best made lenses have a limitation: they cannot resolve details in the image
on a length scale finer than the wavelength of light at the operating frequency. This comes
about because when we solve Maxwell’s equations for the wavevector we get

|k|2 = k2
0 = ω2/c2

0. (1)

If we define the axis of the lens to coincide with the z-axis, we can solve for the z-component
of the wavevector:

kz = ±
√

k2
0 − k2

x − k2
y, k2

0 > k2
x + k2

y (2)

and hence θ , the angle between the ray and the lens axis, is given by

cos θ = kz/k0. (3)
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Figure 1. A conventional lens refracts beams of light emitted by an object to refocus them in the
image plane.

Lenses with large apertures capture large values of θ and have better resolution. The maximum
value of θ occurs for kz = 0 at which point the component of the wavevector perpendicular to
the lens axis is also a maximum:

k2
x + k2

y = k2
0, kz = 0 (4)

and it is kx , ky that define the resolution in the image plane. Hence even for a lens with an
infinite aperture there is a natural limit to resolution of

� = 2π

kmax
= 2π

k0
= λ0. (5)

In the past it has been assumed that this limitation is fundamental, but in a recent paper [2] one
of us showed that it is possible to construct a lens that is capable of overcoming the diffraction
limit and can in principle approach a perfect electromagnetic reconstruction of the object.

These high-resolution details are indeed present in the vicinity of the object, but they
correspond to an imaginary wavevector:

kz = ±i
√

k2
x + k2

y − k2
0, k2

0 < k2
x + k2

y (6)

which implies that the fields decay exponentially away from the object. These decaying
components are usually referred to as the ‘near field’. To reconstruct an image including the
near-field contributions requires an amplifier to restore fields to their original intensity. In fact
there is a very simple and elegant device that performs the necessary amplification: take a
slab of material in which the electrical permittivity and the magnetic permeability have the
following values:

ε = −1, µ = −1. (7)

Some manipulation of Maxwell’s equations will show that such a material also has a refractive
index of

n = −1. (8)

Veselago [1] was the first to apply Snell’s law at the interfaces to show that this slab brings
light to a double focus: once inside the slab (assuming that it is thick enough) and once outside
(see figure 2).

The feasibility of making materials with these electromagnetic properties has been
demonstrated in the microwave regime. Materials with negative ε have been proposed and
demonstrated [3]; the same is true for negative µ [4–7] and these have been combined to
produce negative refraction [8, 9].
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Figure 2. A slab of material with refractive index n = −1 mimics the action of a conventional
lens by refracting beams of light emitted by an object to refocus them in the image plane. For light
which is not part of the far field it has highly unconventional behaviour: see figure 3.

wavefield
of object

surface plasmon
wavefield

Figure 3. For light which is not part of the far field, such as the evanescent fields sketched in
the figure, a slab of material with refractive index n = −1 amplifies the near fields such that
in the image plane they are restored to their original values. In this way sub-wavelength details
of the object are reconstructed, i.e. refocused, in the image plane. Amplification takes place by
stimulating a surface plasmon resonance on the far surface of the slab.

Ray tracing arguments merely show that the slab does the job of a conventional lens in
bringing the rays to a focus. Further investigations show that the slab has another desirable
property: there are absolutely no stray reflections at the surfaces so all light hitting the slab
reaches the image. However, a lens of a given thickness, d , is restricted as to the position of
the object and image: no object at a greater distance than d from the nearest surface of the
lens can produce an image, and conversely no image can be produced further than d from the
nearest surface of the lens.

However, the really startling fact about the slab is that the image it produces is perfect [2].
Calculations show that both the near fields and far fields are present in the image. Since the
near fields decay exponentially from the object this implies that the slab is behaving as an
amplifier! Figure 3 shows a schematic version of the near fields around the slab.

From the figure we can see that amplification occurs through a resonant process: a surface
mode [10] is excited on the side of the slab remote from the object and it is this resonance
which provides the necessary amplification. Like all resonances this one is frequency specific



8466 J B Pendry and S A Ramakrishna

and therefore the lens is perfect only for the frequency to which the resonance is tuned. In the
limit of the extreme near field where

k2
x + k2

y � k2
0 (9)

and for P polarization, the resonance corresponds to a surface plasmon mode. The lens
is also extremely susceptible to any losses in the system which will damp the resonances.
Absorption in effect limits the resolution of any practical realization of the perfect lens, but
still leaves the capability of sub-wavelength imaging. Another limitation of the lens is the
planar configuration. This excludes the possibility of magnification which always requires a
curved surface. If we try to apply conventional design techniques to generalize the perfect
lens we find that the surfaces generated will focus only the far field and the near field is left
behind. The reason is that surface plasmon resonances are vital to operation of the lens and
curved surfaces in general have a surface plasmon spectrum completely different from that of
a planar slab and which is unsuitable for processing the near fields. A different approach is
needed.

First we review the perfect lens theory which we generalize to cylindrical surfaces. Then
we identify conformal transformations as a tool for generating new lenses and finally we discuss
some realizations and how they can image line charges or line currents.

2. Focusing the near field

With a conventional lens we can draw a simple picture of rays propagating through the lens
and being bent to a focus of the far side, but the perfect lens must also act on the near field
and this is a much less familiar entity that cannot be described in terms of ray diagrams. As
figure 3 shows, the near field reaches the image via a resonant process that has little to do with
ray diagrams.

There is another unfamiliar aspect to the near field: whereas in the far field electric and
magnetic energies are present in equal measure, in the near field either the electric or magnetic
component tends to dominate. In fact in the extreme limit expressed by equation (9) the near
fields separate into electrostatic and magnetostatic fields. For example we can write the fields in
region 1 between the object and slab (see figure 3) in terms of S- and P-polarized contributions:

E(r, t) =
∑
kx ,ky

[aS(kx , ky)eS(kx, ky) + aP(kx , ky)eP (kx, ky)]

× exp(ikzz + ikx x + iky y − iωt) (10)

H(r, t) =
∑
kx ,ky

[aS(kx , ky)hS(kx, ky) + aP (kx, ky)hP (kx, ky)]

× exp(ikzz + ikx x + iky y − iωt). (11)

S polarization is defined such that the electric field is normal to the plane of incidence on a
surface:

e+
S(kx, ky) = [ky,−kx, 0] exp

(
ikx x + iky y −

√
k2

x + k2
y − k2

0z
)

e−
S (kx, ky) = [ky,−kx , 0] exp

(
ikx x + iky y +

√
k2

x + k2
y − k2

0z
) (12)

and, using

k × E = +ωµµ0H, (13)
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we can deduce the associated magnetic fields:

h+
S(kx, ky) = 1

ωµµ0

[
+ikx

√
k2

x + k2
y − k2

0,
(

k2
x + iky

√
k2

x + k2
y − k2

0

)
,−(k2

x + k2
y)

]

× exp
(

ikx x + iky y −
√

k2
x + k2

y − k2
0z

)

h−
S (kx, ky) = 1

ωµµ0

[
−ikx

√
k2

x + k2
y − k2

0,
(

k2
x − iky

√
k2

x + k2
y − k2

0

)
,−(k2

x + k2
y)

]

× exp
(

ikx x + iky y +
√

k2
x + k2

y − k2
0z

)
.

(14)

Under extreme near-field conditions, see (9), the magnetic field is the dominant component
and the electric field can be neglected.

Conversely for P polarization we define

h+
P (kx, ky) = [ky,−kx, 0] exp

(
ikx x + iky y −

√
k2

x + k2
y − k2

0z
)

h−
P (kx, ky) = [ky,−kx, 0] exp

(
ikx x + iky y +

√
k2

x + k2
y − k2

0z
) (15)

and use

k × H = −ωεε0E (16)

to deduce the electric fields:

e+
P (kx, ky) = −1

ωεε0

[
+ikx

√
k2

x + k2
y − k2

0,
(

k2
x + iky

√
k2

x + k2
y − k2

0

)
,−(k2

x + k2
y)

]

× exp
(

ikx x + iky y −
√

k2
x + k2

y − k2
0z

)

e−
P (kx, ky) = −1

ωεε0

[
−ikx

√
k2

x + k2
y − k2

0,
(

k2
x − iky

√
k2

x + k2
y − k2

0

)
,−(k2

x + k2
y)

]

× exp
(

ikx x + iky y +
√

k2
x + k2

y − k2
0z

)
.

(17)

For P polarization we see that as (k2
x + k2

y) increases and we move to the extreme near-field
limit, the electric field dominates and the magnetic field becomes irrelevant.

The extreme near-field limit is interesting for several reasons. First, it contains the very
essence of the perfect lens: in this regime the lens focuses details that are inaccessible to a
conventional lens. Secondly, the dominance of one or other of the fields eases the conditions
for perfect focusing: in the case of P polarization, magnetic fields are irrelevant in this limit
and therefore it is only the electric condition which matters:

ε = −1. (18)

Thirdly, in the extreme limit the lens can be generalized in an elegant and simple manner to
lift the restrictions of the slab geometry and the rather unhelpful condition that the object and
image are of equal size. After all, we usually think of a lens as able to magnify an object and
the perfect lens does not oblige in this respect.

In this limit, for P polarization, only the electrostatic fields matter, which enables us to
describe the electrostatic field in terms of a potential. Consider an object which comprises a
distribution of electric charge in the plane z = z1, which is uniform in y but varies with x , and
which gives rise to an electrostatic field. With no lens in place let the field around the object
be

φ(x, z) =
∑

kx

b+
1 (kx) exp[ikx x − kx(z − z1)], 0 < z (19)
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where from equations (4), (6), and assuming that ky = 0, we see that

lim
kx →∞

kz = ±ikx (20)

and we have chosen the solution satisfying the causal boundary conditions at infinity.
In the presence of a lens,

φ1(x, z) =
∑

kx

b+
1(kx) exp[ikx x − kx(z − z1)]

+ b−
1 (kx) exp[ikx x + kx(z − z1)], z1 < z < z2,

φ2(x, z) =
∑

kx

b+
2(kx) exp[ikx x − kx(z − z2)]

+ b−
2 (kx) exp[ikx x + kx(z − z2)], z2 < z < z3,

φ3(x, z) =
∑

kx

b+
3(kx) exp[ikx x − kx(z − z3)], z3 < z

(21)

where z2, z3 mark the beginning and end of the lens. We now match at the boundary to satisfy

φ1(x, z2) = φ2(x, z2),
∂

∂z
φ1(x, z2) = ε

∂

∂z
φ2(x, z2) = − ∂

∂z
φ2(x, z2),

φ2(x, z3) = φ3(x, z3),
∂

∂z
φ2(x, z3) = ε

∂

∂z
φ3(x, z3) = − ∂

∂z
φ3(x, z3)

(22)

and obtain

b+
3(kx) = 4ε exp kx(−z1 + z3)

(ε + 1)2 − (ε − 1)2 exp kx(+2z2 − 2z3)
b+

1(kx)

b+
2(kx) = 2(ε + 1) exp kx(−z2 + z1)

(ε + 1)2 − (ε − 1)2 exp kx(+2z2 − 2z3)
b+

1(kx)

b−
2 (kx) = 2(ε − 1) exp kx(+z1 + z2 − 2z3)

(ε + 1)2 − (ε − 1)2 exp kx(+2z2 − 2z3)
b+

1(kx)

b−
1 (kx) = (ε2 − 1)[− exp(−2kxz2) + exp(−2kx z3)]

(ε + 1)2 − (ε − 1)2 exp kx(+2z2 − 2z3)
b+

1(kx).

(23)

We note that, in the limit ε → −1, the wavefields reduce to

φ1(x, z) =
∑

kx

b+
1(kx) exp[ikx x − kx(z − z1)], z1 < z < z2,

φ2(x, z) =
∑

kx

b+
1(kx) exp[+kx(z1 − z2) + ikx x + kx(z − z2)], z2 < z < z3,

φ3(x, z) =
∑

kx

b+
1(kx) exp[+kx(z1 − 2z2 + z3) + ikx x − kx(z − z3)], z3 < z

(24)

and passage through the lens increases the amplitude of a given component by a factor of

exp[+kx(z3 − z2)] (25)

and therefore the image is refocused in the plane:

z = z1 + 2(z3 − z2). (26)

The region between the two images, z5 < z < z4, is of interest because here the Fourier
components are ‘over-amplified’ and in fact with increasing wavevector kx their amplitude
diverges exponentially. These fields do not correctly represent the fields behind the object and
are the price we pay for trying to reproduce the fields from a set of charges. There is of course
no way that a lens can project a real charge into free space and these divergent fields represent
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Figure 4. A cylindrical annulus of material, dielectric constant ε. (a) The annulus contains two
charges, ±q, one charge at the origin, the other at distance r1 from the origin. (b) A charge +q sits
at a distance r2 from the origin, beyond the annulus.

the compromise which has to be made. Much has been made of this point in a recent Physical
Review Letter [11]. However, when we recognize that real materials will always have a small
degree of absorption represented by an imaginary component of

ε = −1 + iδ (27)

equation (23) tells us that

b+
3(kx) ≈ exp kx(−z1 + z3)

1
4 δ2 + exp[−2kx(z3 − z2)]

b+
1(kx) (28)

and therefore the amplification process is only valid provided that

δ2 � 4 exp[−2kx(z3 − z2)]; (29)

otherwise the process collapses and for large values of kx the waves are in fact attenuated. This
collapse of amplification prevents the divergence in energy density which would otherwise be
implicit in our result. The mathematical divergence is avoided for any finite value of δ.
Absorption also limits the spatial resolution obtainable to of order

� = 1

kx
= d

− ln δ
. (30)

So for a high-resolution lens we must get close to the object (small d) and ensure that we use
low-loss materials.

3. The cylindrical annulus lens

At the heart of the operation of the lens is the surface plasmon. In the near-field limit the
frequencies of all surface plasmons on a planar surface are degenerate:

ωsp(kx , ky) = ωp/
√

2 (31)

where ωp is the frequency of the bulk plasmon. The condition that

ε = 1 − ω2
p

ω2
= −1 (32)

ensures that we are tuned to the surface plasmon frequency. There is another circumstance in
which all of the surface plasmons are degenerate and this is the surface of a cylinder. Therefore
we might ask whether a cylinder has some behaviour analogous to that of the slab. Once again
we assume the near-field limit and consider the geometry shown in figure 4.
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We shall show that this geometry has a lens-like action.
We expand the potential as follows:

φ1 = −q

2πε0

∞∑
n=1

[
rn

1

nrn
+ c+

1nrn

]
cos nθ, r1 < r < a1,

φ2 = −q

2πε0

∞∑
n=1

[
c−

2nr−n + c+
2nrn

]
cos nθ, a1 < r < a2,

φ3 = −q

2πε0

∞∑
n=1

c−
3nr−n cos nθ, a2 < r

(33)

where the first term in the first equation represents the expansion of the free space potential of
a line dipole as shown in figure 4(a). Matching the potentials across the two boundaries gives

c+
1n =

(−1 + a2n
1

a2n
2

)
(
(ε + 1)2 − (ε − 1)2 a2n

1

a2n
2

)
rn

1 (ε2 − 1)

na2n
1

, c+
2n = 2(ε − 1)rn

1 a−2n
2

n
[
(ε + 1)2 − (ε − 1)2 a2n

1

a2n
2

] ,

c−
2n = 2rn

1 (ε + 1)

n
[
(ε + 1)2 − (ε − 1)2 a2n

1

a2n
2

] , c−
3n = 4εrn

1

n
(
(ε + 1)2 − (ε − 1)2 a2n

1

a2n
2

) .

(34)

Limiting case ε → −1

c+
1n = 0, c+

2n = a−2n
1

rn
1

n
, c−

2n = 0,

c−
3n =

[
a2

a1

]2n rn
1

n

(35)

which gives

φ1 = −q

2πε0

∞∑
n=1

rn
1

nrn
cos nθ, r1 < r < a1,

φ2 = −q

2πε0

∞∑
n=1

rn
1 rn

na2n
1

cos nθ, a1 < r < a2,

φ3 = −q

2πε0

∞∑
n=1

[
a2

a1

]2n rn
1

nrn
cos nθ, a2 < r

(36)

i.e. to the external world the system looks like a pair of line charges, one component at the
origin, and the second component at a radius

r2 = r1

[
a2

a1

]2

. (37)

In other words the annulus behaves like a lens bringing fields inside the annulus to a focus
outside in exactly the same manner that a slab of material produces images of objects on the
far side. Furthermore, our new lens has the property of magnification by a factor

[
a2

a1

]2

. (38)
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As a further test of the analogy we consider the complementary geometry of a line source
outside the annulus as shown in figure 4(b). Once more we expand the potential as follows:

φ1 = −q

2πε0

∞∑
n=1

c+
1nrn cos nθ − q

2πε0
ln r2, r < a1,

φ2 = −q

2πε0

∞∑
n=1

[c−
2nr−n + c+

2nrn] cos nθ − q

2πε0
ln r2, a1 < r < a2,

φ3 = −q

2πε0

∞∑
n=1

[
rn

nrn
2

+ c−
3nr−n

]
cos nθ − q

2πε0
ln r2, a2 < r < r2

(39)

where the first term in the last equation represents the expansion of the free space potential of
a line charge. Next we must match the potentials across the two boundaries to give

c+
1n = 2a2n

2

nrn
2

2ε

−(1 − ε)2a2n
1 + (1 + ε)2a2n

2

, c+
2n = 1

nrn
2

2(1 + ε)a2n
2

−(1 − ε)2a2n
1 + (1 + ε)2a2n

2

,

c−
2n = 1

nrn
2

2(ε − 1)a2n
1 a2n

2

−(1 − ε)2a2n
1 + (1 + ε)2a2n

2

, c−
3n = 1

nrn
2

(ε2 − 1)(a2n
1 − a2n

2 )a2n
2

−(1 − ε)2a2n
1 + (1 + ε)2a2n

2

.

(40)

Limiting case ε → −1

c+
1n = 1

nrn
2

a2n
2

a2n
1

,

c+
2n = 0, c−

2n = 1

nrn
2

a2n
2 , c−

3n = 0
(41)

which gives

φ1 = −q

2πε0

∞∑
n=1

a2n
2

a2n
1

rn

nrn
2

cos nθ − q

2πε0
ln r2, r < a1,

φ2 = −q

2πε0

∞∑
n=1

a2n
2

1

nrn
2 rn

cos nθ − q

2πε0
ln r2, a1 < r < a2,

φ3 = −q

2πε0

∞∑
n=1

rn

nrn
2

cos nθ − q

2πε0
ln r2, a2 < r < r2

(42)

i.e. inside the annulus for

r < r2

[
a1

a2

]2

and except for a constant potential shift, the system looks like a line charge located at a radius

r1 = r2

[
a1

a2

]2

. (43)

In other words the annulus behaves like a lens bringing fields outside the annulus to a focus
inside and has the property of demagnification by a factor[

a1

a2

]2

. (44)

Our derivations have neglected retardation and are only valid in the quasi-static limit when
all relevant dimensions are less than the wavelength of radiation. This means not only the
physical dimensions of the system, but also the radius at which image charges are located, i.e.,

r2 = r1

[
a2

a1

]2

� ω−1c0. (45)
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4. A new class of lenses by conformal transformation

The mapping between focusing by a slab and focusing by a cylindrical annulus is so uncannily
complete that one suspects a deeper relationship between the two cases, and this is in fact the
case. We shall show that the original lens, in the form of a slab of ε = −1 dielectric, can be
mapped by conformal transformations into a whole class of cylindrical lenses with different
focusing properties.

First a refresher course in conformal transformations. A conformal transformation:

(i) preserves the solutions of Laplace’s equation in each coordinate system;
(ii) preserves the requirements of continuity of E‖, D⊥ across a boundary with the same

dielectric function.

Therefore if we consider an analytic function φ(z) it will satisfy

∂2φr

∂x2
+

∂2φr

∂y2
= 0 (46)

and if we make a coordinate transformation

z′ = u + iv = f (z) (47)

it will still be the case that φ′
r (z

′) satisfies Laplace’s equation in the new coordinate system:

∂2φ′
r

∂u2
+

∂2φ′
r

∂v2
= 0 (48)

provided that the transformation is everywhere analytic in the region under consideration. We
shall exploit this invariance under transformation to solve for new geometries.

The other independent component of the near field is the magnetic field. Everything we
have said above for imaging a 2D system of electric charges applies to a 2D system of magnetic
poles and µ = −1. Of more relevance, there is also a mapping between line charges and line
currents, because not only does the real part of ln z represent the potential due to a line charge at
the origin (or a line magnetic pole), but also the imaginary part represents the vector potential
of the magnetic field due to a line current:

A(z) = [0, 0, Az(z)] (49)

where

Az(z) = Im ln z = iθ (50)

and hence

B = ∇ × A =
[
∂ Az

∂y
,
−∂ Az

∂x
, 0

]
=

[−i cos θ

|z| ,
+i sin θ

|z| , 0

]
(51)

which is the magnetic field due to a line current at the origin. Furthermore, in the regions
where there is no line current and the permeability is constant,

0 ≈ ∂D

∂ t
= ∇ × H = µ−1µ−1

0 ∇ × B = µ−1µ−1
0

[
0, 0,

∂2 Az

∂x2
+

∂2 Az

∂y2

]
. (52)

Hence Az obeys Laplace’s equation:

∂2 Az

∂x2
+

∂2 Az

∂y2
= 0. (53)

Therefore all the results we derive for imaging line charges apply equally to the magnetic fields
created by line currents.
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line
charges

image
charges

Figure 5. (a) In the uv-plane we consider a slab of material with dielectric function ε = −1. To
the left there is a periodic array of line charges spaced as shown. An image of the line charges is
formed to the left of the slab as we have demonstrated above. This configuration can be mapped
by conformal transformation (54) into that of (b) producing the configuration of a circular annulus
which refocuses the object charge located outside the annulus to an image located inside the annulus.

5. The new lenses

Example 1 (the cylindrical annulus)

Consider the transformation

z′ = ln z (54)

which maps circles centred on the origin in the z-plane into lines parallel to the u-axis (we
must make multiple circuits of the circle to increase the angle without limit), see figures 5(a)
and (b).

From the conformal transformation we deduce that a set of line charges in the z′-plane
will transform to a single charge of the same magnitude in the z-plane but located at distances
given by the properties of the transformation:

u1 = ln r1, u2 = ln a1, u3 = ln a2, u4 = ln r2. (55)

From the focusing properties of the planar lens,

u4 − u1 = 2(u3 − u2); (56)

therefore,

r2/r1 = (a2/a1)
2. (57)

Therefore a simple conformal transformation generates the results we obtained so laboriously
by matching fields at boundaries for the cylindrical case, which is just a mapping of a particular
slab geometry.

A line charge in the z′-plane is represented by

φ′ = ln(z′ − z′
0) (58)

and in the z-plane,

φ = ln(ln z − z′
0). (59)

Expanding about the singularity gives

φ ≈ ln{[z − exp(z ′
0)] exp(−z′

0)} = ln[z − exp(z′
0)] − z′

0; (60)
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Figure 6. (a) The starting configuration of a single line charge and image to which we are going
to apply our second transformation to produce the configuration shown in (b).

hence the mapping preserves the strength of the singularity and therefore the magnitude and
sign of the charge.

Example 2 (the crescent lens)

Consider the transformation

z = 1/z′ = u − iv

u2 + v2
(61)

which maps the plane u = a into circles:

x = a

a2 + v2
, y = −v

a2 + v2
; (62)

hence,
x

y
= −a

v
, v = −ay

x
(63)

and

x = a

a2 + (ay/x)2
, ax = x2

x2 + y2
(64)

or

0 = x2 + y2 − x

a
=

(
x − 1

2a

)2

+ y2 − 1

4a2
(65)

which represents a circle centred on x = 1/2a, radius of 1/2a.
Consider a ‘perfect lens’ configuration in the z′-plane shown in figure 6(a) which will

transform in the z-plane to a line charge in the z′-plane is represented by

φ′ = ln(z′ − z′
0) (66)

and in the z-plane,

φ′ = ln(1/z − z′
0) = ln

(
−z′

0

z − z′−1
0

z

)
= ln(−z′

0) + ln(z − z′−1
0 ) − ln z. (67)

See figure 6(b). In other words, unit line charges transform into unit line charges but at shifted
positions. There is also a charge at the origin which represents the ‘charge at infinity’ in
the original system. It is removed when the system as a whole is charge neutral. Dipoles,
quadrupoles etc all change their strength because the notional separation of charges in the
multipole is stretched.
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Figure 7. A slightly different choice of the parameters in transformation (61) leads to a configuration
of two touching cylinders. An object within one cylinder is refocused inside the second cylinder.

Example 3 (the kissing lens)

As for the transformation shown in figure 6, but the origin of coordinates is placed inside the
slab: see figure 7. This produces a configuration of two touching cylindrical holes embedded
in an ε = −1 medium stretching to infinity. This third example takes line charges inside one
cylinder and refocuses them inside the second cylinder.

Example 4 (a problem case)

In our enthusiasm for transforming shapes it is easy to run away with the notion that the original
slab can be transformed into any 2D shape we desire. This is not the case, as the following
example makes clear. Consider the transformation

2

z′ = 1

z − b
+

1

z + b
= 2z

z2 − b2
(68)

or,

z = z′ ± √
z′2 + 4b2

2
. (69)

This transformation takes a circle into an ellipse:

z′ = z − b2z−1 = r exp(iθ) − b2r−1 exp(−iθ) = [r − b2r−1] cos(θ) + i[r + b2r−1] sin(θ).

(70)

Hence a circle of radius r in the z-plane is traced in the z′-plane as an ellipse. We may seek to
apply this transformation to the annulus of figure 5(b), the result appearing in figure 8.

The mapping is as follows: all circles in the z-plane with r > b map into the entire
z ′-plane, as do circles with r < b. The z′-plane has a cut from z′ = +2ib to −2ib.

The doubly connected nature of the problem means that potentials in the z-plane that are
symmetric about the x-axis will in general have a discontinuity in electric field across the cut
and therefore are not valid solutions of Laplace’s equation in the z′-plane.
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Figure 8. The conformal transformation of (68) maps the concentric cylinders of figure 5(b) into
ellipses. A problem arises because the transformation is not single valued but has a cut in the centre
of the ellipse across which the potential is in general discontinuous and therefore not a solution of
Laplace’s equation as required.

6. Using the new lenses

Consider the annular lens shown in figure 5. It can be used either to produce an image inside
the lens of an external object, or to produce an image outside an internal object. In the former
case the image is demagnified, in the latter case there is magnification. In each case the effect
is given by the ratio of the radii of the two cylinders, a2

1/a2
2 ; see figure 9(a). Or to put it another

way: there is a mapping of the internal space:

a1 > r > a2
1/a2 (71)

into the external space:

a2 < r < a2
2/a1. (72)

Apart from the uniform magnification, objects are undistorted by the lens; see figure 9(b).
Clearly for given a1, a2 the lens is limited in its range—that is to say, myopic.

One obvious application would be to image electrostatic fields on a surface internal to the
annulus. This might be a useful trick to enhance the resolution of a scanning near-field optical
microscope by the magnification of the lens.

Another interesting property of the annular lens is its response to a uniform electric field.
From equation (42) we can see that is we have an applied field of

E0 = −∇φ0 = −∇
(

E0
r

r2
cos θ

)
, (73)
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Figure 9. (a) The annular lens is myopic: only objects closer than r = a2
2/a1 can form an image

inside the annulus. Conversely, objects within the annulus and closer to the centre than r = a2
1/a2

will not produce an image outside the annulus. The limiting circles are shown as dashed lines.
(b) The annular lens produces a magnified image of internal objects and a demagnified image of
external objects.

then in the limit ε → −1 the other fields become

φ1 = −E0
a2

2

a2
1

r

r2
cos θ, r < a1,

φ2 = −E0
a2

2

r2r
cos θ, a1 < r < a2,

φ3 = −E0
r

r2
cos θ, a2 < r < r2.

(74)

In other words the lens is acting as a field amplifier: uniform external fields appear inside the
annulus as uniform fields amplified by a factor of a2

2/a2
1 .

The converse of this situation is a line dipole located at the centre of the annulus. Reference
to equation (36) shows that in the limit ε → −1 the fields become

φ1 = −q

2πε0

r1

r
cos θ, r1 < r < a1,

φ2 = −q

2πε0

r1r

a2
1

cos θ, a1 < r < a2,

φ3 = −q

2πε0

[
a2

a1

]2 r1

r
cos θ, a2 < r

(75)

and once again we see an amplification by a factor of a2
2/a2

1, only this time it is the dipole
viewed from outside that appears the larger.

Next we examine the crescent lens shown in figure 10. Although its function is similar to
that of the annular lens, there are important differences. First, the magnification is not uniform
but varies according to the position of the object. Therefore in general this lens produces a
distorted image. Secondly, the regions where imaging can take place have a different geometry.
Consideration of the bounds on where the object and image lie for the slab lens and mapping
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Figure 10. The crescent lens also has a limit field of view. (a) For 1
2 x3 < x2 < x3, all objects in

the crescent between xmin and x2 are imaged within the crescent lying between x3 and xmax (and
vice versa). No other imaging is possible. (b) For x2 < 1

2 x3, x2 < x3 all objects in the crescent
between xmin and x2 are mapped onto the entire complex plane, excluding the regions inside the
circles of diameters x3 and x ′

max . A schematic location of object and image is shown in each case.

these onto the crescent lens give for the diameter of the bounding circle

xmax = x2x3

2x2 − x3
(76)

and for the inner bound

xmin = x2x3

2x3 − x2
. (77)

Hence there are two distinct cases. If the two bounding cylinders of the lens have diameters
x2, x3—see figure 10—and

1
2 x3 < x2 < x3, (78)

then only objects within a crescent bounded by cylinders of diameter xmin, x2 can produce an
image, which then appears in the crescent bounded by cylinders of diameter x3, xmax (and vice
versa). If the inequality (78) is not obeyed, with the result that

x2 < 1
2 x3, x2 < x3, (79)

then only objects within a crescent bounded by cylinders of diameter xmin, x2 can produce an
image, but now the image appears exterior to the area of the complex plane bounded by the
two cylinders of diameters x ′

max , x3 (and vice versa). In this instance it is in principle possible
for an object to project an image to infinity, or to refocus an object at infinity within the inner
crescent. Since an object at zob is refocused at

zim = 1

z−1
ob − 2(x−1

2 − x−1
3 )

, (80)

it is clear that the vicinity of the point

zob = x2x3

2(x3 − x2)
(81)

maps to infinity. Obviously the projection of an image of a charge to infinity would be a
very singular process and in any case the near-field approximation would break down at some
distance comparable with the free space wavelength. In practice the limit on how far away we
can project an image will depend on the amount of absorption present.
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7. Conclusions

In the limit of all lengths much shorter than the wavelength (the near-field limit), we have
given recipes for a series of two-dimensional lenses derived by conformal transformations
of the original slab lens. Just as a conventional lens works only for the far field, so these
new lenses specialize to the near field as if the requirement of magnification requires some
compromise on the functionality of the lens. Both electric and magnetic versions of the lens
can be envisaged, the former requiring ε = −1 and the latter µ = −1. The lenses have the
property of magnifying the image relative to the object and therefore can perform tasks not
accessible to the original perfect lens.

The cylinder and conformally related 2D object are special in having a degenerate surface
plasmon spectrum. This degeneracy is vital to the functioning of the lens and is not present in
the surface modes of a sphere which occur at

ωss =
√




2
 + 1
ωp (82)

and therefore extension of these results to the 3D case is not straightforward.
We are sure that our list of conformal transformations has not exhausted the interesting

possibilities. In particular, it might be imagined that a series of lenses could be employed in
more sophisticated processes than those considered here.
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